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LE'ITER TO THE EDITOR 

Debye potentials for electromagnetic waves in the presence of 
a charged black hole 

G Stephenson 
Department of Mathematics, Imperial College, London, UK 

Received 15 November 1976 

Abstract. Decoupled equations for the Debye potentials describing the interaction of 
electromagnetic waves with a charged black hole are solved near the outer horizon and at 
infinity. The results are valid not just for small charge, as in earlier work, but for any charge 
e provided le1 < M, where M is the mass of the black hole. 

Much work has been carried out in recent years on the propagation of electromagnetic 
waves in strong gravitational fields, motivated largely by the interest in electromagnetic 
scattering and absorption by black holes (see, for example, Misner et a1 1970, Ruffini et 
UI 1972, Fackerall and Ipser 1972, Breuer et a1 1973, Mashhoon 1973 and Fabbri 
1975). The basic difficulty with such problems is the way in which the Maxwell 
equations are coupled together when put into a curved background space. In terms of 
the four-potential of the Maxwell field, the equations are coupled together even in a 
Schwarzschild space, and it was not until the Newman-Penrose formalism (see Newman 
and Penrose 1962) was developed that decoupling was achieved. More important, the 
same technique decoupled the electromagnetic equations in the case of the Kerr space 
which represents a rotating, uncharged black hole. The Newman-Penrose formalism is 
clearly a powerful tool in this type of work, but unfortunately does not appear to 
decouple the Maxwell equations in a Kerr-Newman space describing a charged, 
rotating black hole, except, as shown by Chitre (1976), when the charge is small. The 
situation is no different for a charged, but non-rotating black hole as described by the 
Reissner-Nordstrom metric. The purpose of this letter is to draw attention to the work 
of MO and Papas (1972) who showed how the use of Debye potentials could be 
extended to a spherically symmetric curved space. Using these potentials, the Maxwell 
equations in the absence of sources and in a spherically symmetric gravitational field 
were found to decouple into two basic equations for two scalar (Debye) potentials. The 
Schwarzschild metric is an obvious example of the type of space considered by MO and 
Papas, and Fabbri (1975) has applied their work to the problem of the scattering and 
absorption of electromagnetic waves by a Schwarzschild black hole. As already 
remarked, the Newman-Penrose formalism is equally appropriate in the Schwarzschild 
case since decoupling of the equations can be obtained in this way too. However, the 
work of MO and Papas is also applicable to the Reissner-Nordstrom metric where the 
Newman-Penrose approach fails unless the charge is small. Taking the Reissner- 
Nordstrom metric in the form 

dr2-r2(dB2+sin28 d4') (1) 
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where M is the mass of the black hole and e its charge, MO and Papas show that, in the 
case of free space (p  = E = 1 in the usual notation), the two Debye potentials U and V 
are given by 

where Z 1 and -111 c m d 111, and h(r )  satisfies the equation 

(w being the angular frequency of the wave). This equation does not appear to be 
soluble in terms of known functions, but writing it in normal form by letting 
h ( r )  = u(r)f(r), where 

we find that f(r) must satisfy the equation 

w 2r4 1(Z + 1) + 2Mr3 - 3r2(M2 + e 2 )  + 6Me'r - 2e4 q+( dr ( r  ' - 2Mr + e 2)2  - ( r  ' - 2Mr + e 2 ,  r2(r2 - 2 ~ r  + e')' ) f = O .  

( 5 )  

Mx = r - r + ,  r -r-  = M ( x  +2d) ,  (6) 

Now putting (see Rowan and Stephenson 1977) 

where r+ and r- are the roots of r 2 -  2Mr + e' = 0 so that 

r+ = M +  (M2 - e2)*l2,  

equation ( 5 )  becomes 

r- = M -  (M2 - e')'/', 2Md =r+-r -=2(M2-e2)1 /2 ,  
(7) 

w 2 ( x + d + 1 ) 4 ~ 2  - Z(Z+I)  
x 2 ( x  + 2 4 '  x ( x  + 2d) 

M 4 x 2 ( x  + 2d)'(x + d + 1)' 

q+( dx 

2@(x + d + 1)3 - 3(M2 + e2)M2(x + d + 1)' + 6M2e2(x + d + 1) - 2e4 + )f =o. (8) 

For large x this has the form 

3+"2M'f = 0, 
dx 

which has solutions 

f = A cos wMx + B sin wMx, 

where A and B are arbitrary constants. 
For small x (that is, near r = r+),  equation (8) takes the form 

P r  a +-+- f+O(x)f, d2f s=( x .2) 
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where O(x) are terms of order x which tend to zero as x + 0, and the constants a, p and y 
are given by (after considerable algebra) 

a = - [  4d4 4d2 16d4 
w2M2(d + 1)'(11d2- 10d +3) +--- 1(1+ 1) (2d +3) 

+;i?i( 3e2 -3d3+13d2+l ld+3)  16d4(d + 1)3 -- 8M4 e4 (23d2+14d+3)] d4(d+u4 ' (12) 

)+  e4 ( 3d+1 )] 

1 (14) 

w2M2(3d - l)(d + 1)3 1(1+ 1) 1 3e2 d 2 -  2d - 1 -- +-+-( P =-[ 4d3 2d 4d3 4M2 3 d3(d+l)3 ' 
(13) 

e4 
-2M4d2(d+1)2 ' 

Equation (1 1) may now be put into Whittaker form by writing 5 = 2&x to give 

This equation has Whittaker function solutions (see Whittaker and Watson 1927) 

f(5) = CW,P (5) + DM,,-p (5)' (16) 
where 

K -P/2&, p = ( y  + a y ,  (17) 
(provided 2p is non-integral) and C and D are arbitrary constants. (Similar results 
involving Whittaker functions have recently been obtained by Rowan and Stephenson 
(1976, 1977) in the solution of the radial equation for a massive scalar meson field in a 
curved background space.) 

Using these results we can now write down, from (2)' the explicit forms of the Debye 
potentials in the two regions: 
(1) Large r 

U =  V=(r2-2Mr+e2)-'/2(A cosw(r-r+)+B sinw(r-r+))P;"(cos e) e-i"'e-id 
(18) 

(19) - r-'(A' cos wr + B' sin or)P;"(cos 0) e-'"' e-'&. 

(2) Near r = r+ 
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where K and p are given by equation (17). In all this work there is no restriction on the 
charge e other than the usual condition le1 < M  (see equation (7)). 

I am very grateful to D J Rowan for useful discussions during the preparation of this 
paper. I am also grateful to Professor R J Elliott for the hospitality shown to me during 
my stay in the Department of Theoretical Physics, University of Oxford, where this 
work was carried out. 
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